Generative AI defined: How it works, benefits and dangers
ChatGPT is dominating the headlines, but when it comes to generative AI, there is a lot more you should know.
The likes of ChatGPT and DALL-E, both from OpenAI, are rapidly gaining traction in the world of business and content creation. But what is generative AI, how does it work and what is all the buzz about? Read on to find out.
What is generative AI?
In simple terms, generative AI is a subfield of artificial intelligence in which computer algorithms are used to generate outputs that resemble human-created content, be it text, images, graphics, music, computer code or otherwise.
In generative AI, algorithms are designed to learn from training data that includes examples of the desired output. By analyzing the patterns and structures within the training data, generative AI models can produce new content that shares characteristics with the original input data. In doing so, generative AI has the capacity to generate content that appears authentic and human-like.
How does generative AI work?
Generative AI is based on machine learning processes inspired by the inner workings of the human brain, known as neural networks. Training the model involves feeding algorithms large amounts of data, which serves as the foundation for the AI model to learn from. This can consist of text, code, graphics or any other type of content relevant to the task at hand.
Once the training data has been collected, the AI model analyzes the patterns and relationships within the data to understand the underlying rules governing the content. The AI model continuously fine-tunes its parameters as it learns, improving its ability to simulate human-generated content. The more content the AI model generates, the more sophisticated and convincing its outputs become. Read More…